Q1.
Two of the angles in a triangle are 70° and 40°
Jack says,

Explain why Jack is not correct.

1 mark

Q2.
Layla completes one-and-a-half somersaults in a dive.

How many degrees does Layla turn through in her dive?

Q3.
A shaded isosceles triangle is drawn inside a rectangle.

Not
to scale

Calculate the size of angle \boldsymbol{a}.

Q4.
Here is a rectangle.

Not to

 scaleCalculate the size of angles \boldsymbol{a} and \boldsymbol{b}.
Do not measure the angles.

1 mark $b=\square$

1 mark

Q5.

The diagram shows a pentagon.

Each side of the pentagon is the same length.
Is the shape a regular pentagon?
Circle Yes or No.

Yes / No

Explain your answer.

1 mark
Work out the size of angle a

Q6.
$P Q$ is a straight line.
Not drawn
accurately

Calculate the size of angle x.
Do not use a protractor (angle measurer).

Q7.
ABCD is a rectangle.

What are the values of the missing angles?

$$
x=
$$

Q8.
Look at angles $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ and \boldsymbol{e}

Write the angles in order of size, starting with the smallest.

Q9.

Estimate the size of angle x

Circle the closest estimate.
170° 310°
190°
260°
180°

Q10.
Here is a regular octagon.

Calculate the sizes of angles \boldsymbol{a} and \boldsymbol{b}

1 mark

$$
b=\square
$$

Mark schemes

Q1.

An explanation showing an understanding:

- that this specific triangle has angles 70,70 and 40

OR

- of the properties of an equilateral triangle - all angles are equal (60°)
and therefore that this triangle cannot be equilateral, e.g.
- The angles aren't 60°
- There is not a 60° angle
- It has two different angles $\left(70^{\circ}\right.$ and $\left.40^{\circ}\right)$ so it can't be equilateral
- The angles aren't the same
- An equilateral triangle has $60^{\circ}+60^{\circ}+60^{\circ}$
- All the angles are the same in an equilateral triangle
- It's an isosceles triangle.
(In the context of this question, the term isosceles triangle is treated as not including equilateral triangles as a special type, as the national curriculum does not specify this at key stage 2.)

Do not accept vague or incomplete explanations, e.g.

- The other angle is 70°
- They aren't (all) the same. (No reference to angles)
- An equilateral triangle has equal angles. (Does not say all.)
Do not accept explanations which include incorrect mathematics or incorrect information that is relevant to the explanation, e.g.

$$
\text { - } 40+70=110+70=180
$$

Q2.
540

Q3.
Award TWO marks for the correct answer of 104°.
If the answer is incorrect, award ONE mark for evidence of an appropriate method, e.g:

- $180-38-38=a$

Answer need not be obtained for the award of ONE mark.

Q4.
(a) 56
(b) 34

> If the answers to (a) and (b) are incorrect, award ONE mark if their (a) plus their (b) $=90^{\circ}$, provided that (b) is not 45°, 30° or 60°.

Q5.

Indicates No and gives a correct explanation
eg

- The angles are not the same size
- A regular pentagon looks like this,
 with its angles all the same size
- All the angles should be 108°
- It doesn't have rotation symmetry
- It's got more sides than a square so all its angles should be obtuse, but they're not
60°

Shows that the 150° angle can be split into 90° and 60°
or
Divides the pentagon vertically and shows that half a is 30°
or

Draws triangles to show a rectangle, labelling the non-right angles on at least one side correctly eg
-

or
Shows or implies that the angle sum of a pentagon is 540°

Accept minimally acceptable explanation
eg

- $90 \neq 150$
- Different angles
- A regular pentagon doesn't have right angles in it
- A regular one can't have 150° angles
- It doesn't look the same when it's turned
- Not all the angles are obtuse
! Incorrect angle size for a regular pentagon given
Condone alongside a correct response eg, accept
- The angles are different, they should be 60° (error, but all equal implied)
- The angles should all be 70° (error)
eg, do not accept
- The 90° angles should be 60° (does not imply the angles should all be the same)
Do not accept incomplete explanation
eg
- Not the same
- It has two right angles
- Two angles are the same
- A regular pentagon looks like this - A regular pentagon doesn't have any vertical lines ! Indicates Yes, or no decision made, but explanation clearly correct Condone provided the explanation is more than minimal

Q6.

107

Q7.
90°
270°

Q8.
Letters written in order as shown
d, e, a, b, c

Q9.
190° indicated

Q10.
$a=135^{\circ}$
b $=45^{\circ}$

$$
\text { Accept } \boldsymbol{b}=180^{\circ}-\boldsymbol{a}
$$

