1. Here is a pattern of number pairs.

a	b
1	9
2	19
3	29
4	39

Complete the rule for the number pattern.

$$
b=\square \times a-\square
$$

2.

$n=22$
What is $2 \boldsymbol{n}+9$?

$2 q+4=100$
Work out the value of \boldsymbol{q}.

3. Alfie has some photographs printed.

The cost is $£ 2.50$ for postage and 12 pence for each print.

Alfie uses this formula for the total cost (C) in pence.

$$
C=250+12 n
$$

\boldsymbol{n} stands for the number of photographs.
The total cost for Alfie is $\mathbf{£ 6 . 7 0}$
How many photographs does he have printed?

4.
(a) There are \boldsymbol{n} counters in Alfie's bag.

Alfie puts $\mathbf{3}$ more counters in the bag.
Write an expression for the number of counters that are in the bag now.

(b) Megan has two boxes.

There are \boldsymbol{m} counters in each box.

She puts all her counters together in a pile, then removes 5 of them.
Write an expression for the number of counters that are in the pile now.
5.
x stands for an odd number.
y stands for an even number.

Look at the expressions below.
For each expression, tick to show if it is odd or even.

The first one is done for you.

6. Lisa is using trial and improvement to find a solution to this equation.

$$
x^{2}-3 x=1
$$

Here are her first few trials.
Complete the missing information.

$$
\begin{aligned}
& \text { When } x=3, x^{2}-3 x=\frac{0}{0} \text {, so this value of } x \text { is too small } \\
& \text { When } x=4, x^{2}-3 x=\ldots \text {, so this value of } x \text { is too } \\
& \text { When } x=3.5, x^{2}-3 x=\ldots \text {, so this value of } x \text { is too }
\end{aligned}
$$

What value of x should Lisa try next?

$$
x=
$$

Explain why you chose that value.

1 mark
7. \mathbf{p} and \mathbf{q} each stand for whole numbers.

$$
p+q=1000
$$

\mathbf{p} is 150 greater than \mathbf{q}.

Calculate the numbers \mathbf{p} and \mathbf{q}.

2 marks
8. Ann makes a pattern of L shapes with sticks.

Shape-number:
Number of sticks: 7

2
11

3
15

Ann says:
"I find the number of sticks for a shape by first multiplying the shape-number by 4, then adding 3 ".

Work out the number of sticks for the shape that has shape-number 10

Ann uses 59 sticks to make another \mathbf{L} shape in this pattern.
What is its shape-number?

Here is Ann's rule again:
'II find the number of sticks for a shape by first multiplying the shape-number by 4, then adding 3 ".

Write a formula to work out the number of sticks for any L shape.
Use \mathbf{S} for the number of sticks and \mathbf{N} for the shape-number.
S =

2 marks
9.

Solve this equation to find the value of y.

$$
8(y+12)=100
$$

10.

Find the value of \boldsymbol{t} in this equation.

$$
33-8 t=15
$$

11.

What is the value of \boldsymbol{u} in this equation?

$$
5 \boldsymbol{u}-10=\boldsymbol{u}+46
$$

12. The sum of two numbers is $\mathbf{5}$

The difference between the numbers is $\mathbf{0 . 5}$
What are the numbers?

13.

Find the value of \boldsymbol{x} in this equation.

$$
6 x-27=0
$$

14.

Find the value of \boldsymbol{t} in this equation.

$$
4+t=9 t
$$

Mark schemes

1. Both numbers correct as shown:

$$
b=10 \times a-1
$$

2.

(a) 53
3. 35
or
Shows or implies a complete correct method, eg:

- $(670-250) \div 12$
- $670=250+12 n$
$12 n=670-250$
$12 n=430$ (error)
$n=430 \div 12=25.8$ (error)
! Inconsistent units
Within an otherwise correct method, condone
eg, for 1 mark accept
(£6.70-250) $\div 12$
! Condone correct embedded solutions
Award 1 mark, for a response which shows 35 as the embedded solution to their working

4. (a) $n+3$ or $3+n$
! Algebra
! Alternative letter used, eg, for part (a), accept m used instead of n , if the expression is otherwise correct:

- $m+3$
(b) $2 m-5$
! Condone unsimplified or unconventional algebra, eg, for part (b):
- $m+m-5$
- $m 2-5$

5. Makes all four correct decisions, ie:

- odd even

Accept unambiguous indications, eg:

- ' y ' or ' x ' for ticked in each row

2
or
Makes three correct decisions
6. Gives correct information for $x=4$, eg

- 4, too big
- 4 , too high
- 4, too much above 1

Do not accept incomplete information that does not link to the value of 1, eg

- 4, too incorrect
- 1.75 , too big
! In both the first and second answers, shows correct values but omits or gives incorrect further information, eg
- 4, too small
1.75, too \qquad
Do not award the first mark, but award the second mark
! Value rounded
Accept 1.8
Do not accept 1.7

Gives a logical value for the next trial, and justifies their decision, eg

- 3.2 , because I know it is between 3 and 3.5
- 3.25 , it is half way between 3 and 3 and a half
- 3.3 because it is bigger than 3 which was too small but smaller than 3.5 which was too big
- 3.4, it has to be smaller than 3.5 (that it is greater than 3 is implicit)
! Logical values
Accept any of the following:
3.1
3.2
3.3
3.4
3.25

Also accept any value between 3.3 and 3.4 provided their justification shows why the solution is between these values eg, accept (since a further trial has clearly taken place)

- $3.35,3.3$ is too small
- 3.302 , because 3.303 is just over 1
eg, do not accept
- 3.35, because I know it is between 3 and 3.5

Accept minimally acceptable justification, eg

- 3.2, 3.5 is too big

Do not accept incomplete justification, eg

- 3.3, it gets closer to 1
- 3.25 because it is at an appropriate interval
! For the third part, follow-through
If their calculation in the second part for $x=3.5$ was too small, accept $x=3.6,3.7,3.75,3.8$ or 3.9 alongside an explanation comparable with those given in the mark scheme

7.

Award TWO marks for the correct answer of $p=575$ AND $q=425$
If the answer is incorrect, award ONE mark for evidence of an appropriate method, eg

- $\mathrm{q}+\mathrm{q}+150=1000$
- $q+q=850$
- $q=850 \div 2$
- $p=q+150$

Both p and q must be correct for the award of the marks.
Accept for ONE mark, answers given in the wrong order, ie $p=425$ AND $q=575$

Up to 2
8. (a) Award TWO marks for the correct answer of 43 , even if there are errors in the working.

If the answer is incorrect, award ONE mark for evidence of an appropriate calculation of multiplication by 4 and addition of 3 , eg:

- $3+(4 \times 10)$
- $4 \times 10+3$
- $10+10+10+10+3$

OR by drawing OR other methods.
Up to 2
(b) 14
(c) Award TWO marks for expressions such as:

- $S=4 \mathrm{~N}+3$
- $S=3+4 N$
- $\mathrm{S}=\mathrm{N}+\mathrm{N}+\mathrm{N}+\mathrm{N}+3$

If the answer is incorrect, award ONE mark for evidence of multiplying N by 4 in the expression, eg:

- 4 N
- $4 \times N$
- N. 4
- $\mathrm{N}+\mathrm{N}+\mathrm{N}+\mathrm{N}$

OR award ONE mark for evidence of adding 3 in the expression, eg:

- $\mathrm{N}+3$

Do not accept $S=\times 4+3=N$
Up to 2
[5]
9. $\frac{1}{2}$ or equivalent

! Algebra

Accept equivalent fractions or decimals
or
Shows or implies a correct first step of algebraic manipulation that either reduces the number of terms or collects variables on one side of the equation and numbers on the other or correctly removes the brackets, eg:

- $8 y+96=100$
- $y+12=100 \div 8$
- $8 y=4$

OR

Shows or implies a complete correct method, eg:

- $100 \div 8=12$ (error) $12-12=0$
- $25 \times 4=100$ $12.5 \times 8=100$ $12.5-12$

Do not accept a first step of algebraic manipulation which has a conceptual error, eg:

- $y+12=100$
- $y+96=100$
- $8 y+12=100$
! Correct embedded solutions
Award $1 m$ for a response which shows $\frac{1}{2}$, or
equivalent, as the embedded solution to their working

10. Award TWO marks for the correct answer of 2.25

If the answer is incorrect, award ONE mark
for evidence of an appropriate method, eg
algebraic manipulation to reach
$18=8 t$
Answer need not be obtained for the award of the mark.

Up to 2
[2]

Award TWO marks for the correct answer of 14
If the answer is incorrect, award ONE mark for evidence of an appropriate method, eg
algebraic manipulation to reach
$4 \boldsymbol{u}=56$
Calculation need not be completed for the award of the mark.
Accept for ONE mark trial and improvement showing two convergent attempts or two attempts which straddle the correct value and which are within the range 11-17 OR one error in the collection of terms.

Up to 2
12.

Award TWO marks for a correct answer of 2.25 AND 2.75
Accept the numbers in any order.
Accept the numbers in fraction form.
If the answer is incorrect award ONE mark for evidence of an appropriate method, eg $5 \div 2=2.5$
AND $2.5+0.25$
AND $2.5-0.25$
OR trial and improvement showing two attempts, using numbers between 2 and 3 , which either converge towards or straddle the correct answer.
up to 2
13. Award TWO marks for the correct answer of 4.5

OR $41 / 2$ OR $^{9} / 2$ OR $^{27} / 6$.
If the answer is incorrect, award ONE mark for evidence
of an appropriate method, eg:

$$
x=27 \div 6
$$

Accept any equivalent to $9 / 2$
Calculation need not be performed for the award of ONE mark, but the method shown must be capable of producing the correct answer.
Accept for the award of ONE mark evidence of trial and improvement leading to an incorrect answer, even though this is an inappropriate method of solving linear equations, eg:

$$
\begin{aligned}
& 6 \times 5-27=3 \\
& 6 \times 4-27=-3 \\
& x=\text { incorrect answer between } 4 \text { and } 5
\end{aligned}
$$

Up to 2
14. Award TWO marks for the correct answer of $1 / 2$ OR 0.5

If answer is incorrect, award ONE mark for evidence of appropriate method which results in:

- $8 t=4$, or equivalent.

