Subtraction - Crossing 10 (2)

Spot and explain the mistake.

Use the ten frame to work out the following problem.

There are \qquad counters. 6 were taken away.
8 were left.

Can you represent this another way?

There are 13 apples. ___ were taken away. Now there are 5 left.

Represent the story as a number sentence, part-whole model and on a number line?

There are 12 counters.
\qquad are blue.
4 counters are red.

Complete the part-whole model and calculation.

There are \qquad doughnuts. 4 were taken away. Now there are 7 left.

Represent the story as a number sentence, part-whole model and on a number line?

First there are 15.
Then \qquad were taken away.
Now there are 6.
Represent this on the ten frames below.

There are 15 counters. 8 are blue. 7 are red.

15
8

Spot the mistake and explain how you know.

Complete:

Can you represent this on ten frames?

Answers - Subtraction - Crossing 10 (2)

There are 17 counters. 8 were taken away. How many are left?

$$
17-\boxed{8}=8
$$

Spot and explain the mistake.
The ten frames show $16-8=8$.

Use the ten frame to work out the following problem.

There are \qquad counters. 6 were taken away. 8 were left.

$$
14-\boxed{6}=8
$$

Can you represent this another way?
There are 13 apples. 8 were taken away. Now there are 5 left.

Representations to show $13-8=5$.
Represent the story as a number sentence, part-whole model and on a number line?

There are 12 counters.
$\frac{8}{4}$ are blue.

4 counters are red.

There are \qquad doughnuts. 4 were taken away. Now there are 7 left.

Representations to show $11-4=7$.

Represent the story as a number sentence, part-whole model and on a number line?

First there are 15.
Then 9 were taken away.
Now there are 6 .
Represent this on the ten frames below.

Spot the mistake and explain how you know. There are 7 blue counters and 8 red counters (not 7 red and 8 blue).

Complete:

Can you represent this on ten frames?

