1. n and p stand for two numbers.
n is a multiple of 5
p is a multiple of 6
$\frac{n}{p}=\frac{2}{3}$

Find numbers that n and p stand for.

2.

Anna says $\frac{4}{7}$ is greater than $\frac{5}{9}$
Explain why Anna is correct.

3.

In this circle, each shaded part is $\frac{1}{5}$ of the area of the circle.
The two white parts have equal areas.

Not
drawn
accurately

What fraction of the circle is one of the white areas?

4. This square is divided into three parts.

Part \mathbf{A} is $\frac{\mathbf{1}}{\mathbf{3}}$ of the area of the square.
Part \mathbf{B} is $\frac{\mathbf{2}}{\mathbf{5}}$ of the area of the square.

What fraction of the area of the square is part \mathbf{C} ?

5. 150 people take part in a walk.

This chart shows the number of people still walking at different times.

Use the chart to estimate the time when two-thirds of the people are still on the walk.

What percentage of the people who started are still on the walk at 3pm?

2 marks
6. Lili and Julian each start with the same number.

Lili works out half of the number.
Julian works out three-quarters of the number.
The sum of their answers is $\mathbf{2 7 5}$
What was the number they started with?

7.

What fraction is exactly half-way between $\frac{3}{5}$ and $\frac{5}{7}$?
8.
$\frac{5}{11}=0.454545 \ldots$

Find a fraction that is equal in value to
0.0454545 ...
9.

12500 people visited the museum in 1995
This is an increase of a quarter on 1994

How many visitors were there in 1994 ?

10. Place these numbers in order of size, starting with the smallest.

smallest
0.091

0.109

1 mark
Place these fractions in order of size, starting with the smallest.
$\frac{1}{2}$
$\frac{1}{3}$
$\frac{5}{12}$

largest

1 mark

Mark schemes

1. Award marks as shown below for values of n and p
which meet the following criteria:

	$n: p$	
	$2: 3$	$\mathbf{3 : 2}$
n is multiple of 5 and p is multiple of $\mathbf{6}$	2 marks $[A]$	1 mark $[\mathrm{C}]$
\boldsymbol{n} is multiple of 5 or \boldsymbol{p} is multiple of $\mathbf{6}$	1 mark [B]	0 marks

The following examples are worth 2 marks:

- $n=20$ and $p=30[A]$
- $n=80$ and $p=120[A]$
$!$ For $2 m$ or 1 m , accept multiple answers provided all meet the requirements for the mark(s) and are clearly distinguishable as separate answers, eg for 2 marks
- $n=20,40,60$

$$
p=30,60,90
$$

or
The following examples are worth 1 mark:

- $n=5$ and $p=7.5[B]$
- $n=10$ and $p=15[B]$
- $n=4$ and $p=6[B]$
- $n=90$ and $p=60[C]$

OR

Shows or implies a method for rearranging $\frac{n}{p}=\frac{2}{3}$ which moves p from the denominator, eg:

- $3 n=2 p$
- $n=\frac{2 p}{3}$

OR
Shows or implies a complete correct method, eg:

- $2 \times 5 \times 6: 3 \times 5 \times 6$
! For 1 m , condone a list of at least five additional ratios or
fractions equivalent to $\frac{2}{3}$ with none incorrect

2. Gives a correct explanation that converts the given fractions to decimals or fractions with a common denominator / numerator or percentages, eg:

- $\frac{4}{7}=\frac{36}{63}$ but $\frac{5}{9}=\frac{35}{63}$
- $0.57142 \ldots>0.55555$
- Because there is a $\frac{1}{63}$ difference between the two

For $\frac{4}{7}$ accept:

- $0.57($ (..) or $57(. . . \%)$

For $\frac{5}{9}$ accept:

- 0.56 or $0.55(\ldots)$ or $56(\%)$ or $55(\ldots \%)$

Accept minimally acceptable explanations, eg:

- $\frac{36}{63} \quad \frac{35}{63}$
- 0.560 .57

Do not accept incomplete explanations that fail to convert both fractions to a common format, eg:

- $\frac{4}{7}$ is 0.57 so it is bigger
- 9ths are smaller than 7ths and there is only one more 9th
than 7 th so $\frac{4}{7}$ is greater
! Condone method of conversion incorrectly expressed in an otherwise correct explanation, eg:
- $\frac{4}{7} \times 9=\frac{36}{63}$

3. $\frac{3}{10}$ or equivalent Accept equivalent fractions, decimals or percentages
or
Shows or implies a complete correct method and no conceptual errors, eg:

- Shaded fraction is $\frac{1}{5}+\frac{1}{5}=\frac{2}{5}$

Fraction of total white area $=1-\frac{2}{5}=\frac{3}{5}$

$$
\frac{3}{5} \div 2
$$

- $\frac{1}{5}+\frac{1}{5}=20 \%+20 \%=30 \%$ (error)

White area $=70 \%$
Each white area $=35 \%$
! 30 with no \% sign
Accept for 1 m as evidence of a correct method
$!\frac{1.5}{5}$ or $\frac{1 \frac{1}{2}}{5}$
Accept for 1 as evidence of a correct method
(incorrect notation for $\frac{3}{5} \div 2$)
Do not accept conceptual errors seen, eg:

- $\frac{1}{5}+\frac{1}{5}=\frac{2}{10}$
- $\frac{1}{5}+\frac{1}{5}=5 \%+5 \%=10 \%$
- $\frac{6}{10} \div 2=\frac{3}{5}$

4.

Award TWO marks for the correct answer of $\frac{4}{15}$
If the answer is incorrect, award ONE mark for evidence of an appropriate method, eg
$\frac{1}{3}=\frac{5}{15}$
$\frac{2}{5}=\frac{6}{15}$
$C=\frac{15-5-6}{15}$
Answer need not be obtained for the award of the mark.
Up to 2
5. (a) Answer in the range 12:30pm to 1:00pm exclusive.

Accept answers with or without ' pm '.
(b) Award TWO marks for the correct answer of $26 \frac{2}{3} \%$ OR 26.6% Accept 26.6\% OR 26.7\% OR 26.6 ... \% OR 27\%
Accept for ONE mark 26\%
If the answer is incorrect, award ONE mark for evidence of an appropriate method, eg
$40 \div 150 \times 100$
Answer need not be obtained for the award of the mark.
Up to 2
6. Award TWO marks for the correct answer of 220

If the answer is incorrect, award ONE mark
for evidence of an appropriate method, eg
$275 \div 5 \times 4$
Answer need not be obtained for the award of the mark.
Up to 2
7.
$\frac{23}{35}$
Accept equivalent fractions.
8. $\frac{1}{22}$ OR $\frac{5}{110}$ Accept equivalent fractions. Do not accept $\frac{0.5}{Z i}$
9. Award TWO marks for the correct answer of 10000

If answer is incorrect, award ONE mark for evidence of an appropriate strategy, eg:

- $12500 \div 5 \times 4$

Up to 2
10.
(a) 0.0910 .1090 .190 .9

All four numbers in their correct places.
(b) $1 / 3$ 5/12 $1 / 25 / 6$

All four numbers in their correct places.

