Reasoning and Problem Solving Step 2: Make Equal Groups - Grouping

National Curriculum Objectives:

Abstract

Mathematics Year 2: (2C6) Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers Mathematics Year 2: (2C7) Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs Mathematics Year 2: (2C8) Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts Mathematics Year 2: (2C9b) Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot

Differentiation:

Questions 1, 4 and 7 (Problem Solving)
Developing find which numbers can be put into equal groups of a given size and explain what they have in common. Pictorial support is aligned to reflect group sizes and all images are the same size; one to one correspondence; numerals only.
Expected Find which numbers can be put into equal groups of a given size and explain what they have in common. Pictorial support is not aligned and/or is a mix of sizes; one to one correspondence; numerals only.
Greater Depth Find which numbers can be put into equal groups of a given size and explain what they have in common. Includes no/children creating their own pictorial support; numerals and words.

Questions 2, 5 and 8 (Problem Solving)
Developing Find the largest and smallest possible number of equal groups that can be made from an amount. Differentiation the same as question 1.
Expected Find the largest and smallest possible number of equal groups that can be made from an amount. Differentiation the same as question 4.
Greater Depth Find the largest and smallest possible number of equal groups that can be made from an amount, then list other possibilities. Differentiation the same as question 7.

Questions 3, 6 and 9 (Reasoning)

Developing Explain which of two statements is correct. Differentiation the same as question 1. Expected Explain which of two statements is correct. Differentiation the same as question 4.
Greater Depth Explain which two of three statements are correct. Differentiation the same as question 7.

More Year 2 Multiplication and Division resources.

Did you like this resource? Don't forget to review it on our website.

Make Equal Groups－Grouping Make Equal Groups－Grouping

1a．Which of these numbers can be put into 2 equal groups？

What do they have in common？

2a．These 20 jewels need to be sorted into equal groups．

Apart from 20 groups of 1，what is the largest possible number of groups？

Apart from 1 group of 20 ，what is the smallest possible number of groups？吅

3a．Zac and Toya have 12 counters．

Who is correct？Explain why．
唍

1b．Which of these numbers can be put into 10 equal groups？

What do they have in common？问

2b．These 18 jewels need to be sorted into equal groups．

Apart from 18 groups of 1 ，what is the largest possible number of groups？

Apart from 1 group of 18 ，what is the smallest possible number of groups？

3b．Safi and Dev have 16 counters．

Who is correct？Explain why．

Make Equal Groups - Grouping Make Equal Groups - Grouping

4a. Which of these numbers can be put into 5 equal groups?

What do they have in common?
K

5a. These 30 jewels need to be sorted into equal groups.

Apart from 30 groups of 1 , what is the largest possible number of groups?

Apart from 1 group of 30 , what is the smallest possible number of groups?

6a. Mikal and Kia have 24 counters.

Who is correct? Explain why.
国

4b. Which of these numbers can be put into 6 equal groups?

What do they have in common?
[
5b. These 25 jewels need to be sorted into equal groups.

Apart from 25 groups of 1 , what is the largest possible number of groups?

Apart from 1 group of 25 , what is the smallest possible number of groups?
绿
6b. Ella and Wes have 36 counters.

Make Equal Groups - Grouping Make Equal Groups - Grouping

7a. Which of these numbers can be put into both three or four equal groups?

eighteen 28 thirty-six		
thirty- two	21	
sixteen	48	twenty- four

What do they have in common?

8a. Fifty-six jewels need to be sorted into equal groups.

Apart from fifty-six groups of 1 , what is the largest possible number of groups?

Apart from one group of 56, what is the smallest possible number of groups?

Find four more possible numbers of groups.

9a. Zia, Ted and Deeba have 60 counters.
Sixty in equal groups of 10

Sixty in equal groups of five makes 12 groups.

Who is correct? Explain why.

7b. Which of these numbers can be put into both five or ten equal groups?

What do they have in common?

8b. Thirty-six jewels need to be sorted into equal groups.

Apart from thirty-six groups of 1 , what is the largest possible number of groups?

Apart from one group of 36 , what is the smallest possible number of groups?

Find five more possible numbers of groups.

9b. Cole, Layla and Kai have 42 counters.

42 in equal groups of 8 makes five groups.

Cole
Forty-two in equal groups of 6 makes seven groups.
Layla
Forty-two in equal groups of 3 makes 14 groups.

Kai
Who is correct? Explain why.

Reasoning and Problem Solving Make Equal Groups - Grouping

Reasoning and Problem Solving Make Equal Groups - Grouping

Developing

1a. 8 and 14. The numbers are both multiples of 2 /in the 2 times table.
2a. Largest: 10. Smallest: 2.
3a. Toya is correct because $12 \div 3=4$.

Expected

4 a .15 and 20 . The numbers are both multiples of $5 /$ in the 5 times table.
5a. Largest: 15. Smallest: 2.
6a. Kia is correct because $24 \div 4=6$.

Greater Depth

7a. thirty-six, 12, 48 and twenty-four. All the numbers are multiples of 3 and 4/are in the 3 and 4 times tables.
8a. Largest: 28. Smallest: 2. Other possible numbers: 4, 7, 8, 14.
9a. Zia and Deeba are correct because 60 $\div 6=10$ and $60 \div 12=5$.

Developing

1b. 20 and 30. The numbers are both multiples of 10 /in the 10 times table.
2b. Largest: 9. Smallest: 2.
3b. Dev is correct because $16 \div 4=4$.

Expected

4b. 18 and 30 . The numbers are both multiples of 3 and $6 /$ in the 3 and 6 times table.
5b. Largest: 5. Smallest: 5.
6b. Wes is correct because $36 \div 9=4$.

Greater Depth

7b. fifty, 30, 20 and forty. All the numbers are multiples of 5 and 10/are in the 5 and 10 times tables.
8b. Largest: 18. Smallest: 2. Other possible numbers: 3, 4, 6, 9, 12.
9b. Layla and Kai are correct because 42 $\div 7=6$ and $42 \div 14=3$.

